On Some Methods for Dimensionality Reduction of ECG Signals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

Spectral Methods for Dimensionality Reduction

How can we search for low dimensional structure in high dimensional data? If the data is mainly confined to a low dimensional subspace, then simple linear methods can be used to discover the subspace and estimate its dimensionality. More generally, though, if the data lies on (or near) a low dimensional submanifold, then its structure may be highly nonlinear, and linear methods are bound to fai...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Kernel Dimensionality Reduction on Sleep Stage Classification using ECG Signal

The purpose of this study is to apply Kernel Dimensionality Reduction (KDR) to classify sleep stage from electrocardiogram (ECG) signal. KDR is supervised dimensionality reduction method that retains statistical relationship between input variables and target class. KDR was chosen to reduce dimensionality of features extracted from ECG signal because this method doesn’t need special assumptions...

متن کامل

Multilevel dimensionality-reduction methods

When data sets are multilevel (group nesting or repeated measures), different sources of variations must be identified. In the framework of unsupervised analyses, multilevel simultaneous component analysis (MSCA) has recently been proposed as the most satisfactory option for analyzing multilevel data. MSCA estimates submodels for the different levels in data and thereby separates the “within”-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Computer Science and Applications

سال: 2019

ISSN: 2156-5570,2158-107X

DOI: 10.14569/ijacsa.2019.0100942